A finite element method for surface PDEs: matrix properties

نویسندگان

  • Maxim A. Olshanskii
  • Arnold Reusken
چکیده

We consider a recently introduced new finite element approach for the discretization of elliptic partial differential equations on surfaces. Themain idea of this method is to use finite element spaces that are induced by triangulations of an “outer” domain to discretize the partial differential equation on the surface. The method is particularly suitable for problems in which there is a coupling with a problem in an outer domain that contains the surface, for example, two-phase flow problems. It has been proved that the method has optimal order of convergence both in the H1 and in the L2-norm. In this paper, we address linear algebra aspects of this new finite element method. In particular the conditioning of the mass and stiffness matrix is investigated. For the two-dimensional case we present an analysis which proves that the (effective) spectral condition number of the diagonally scaled mass matrix and the diagonally scaled stiffness matrix behaves like h−3| ln h| and h−2| ln h|, respectively, where h is the mesh size of the outer triangulation. Mathematics Subject Classification (2000) 58J32 · 65N15 · 65N30 · 76D45 · 76T99 Partially supported by the the Russian Foundation for Basic Research through the projects 08-01-00159 and 09-01-00115. This work was supported by the German Research Foundation through SFB 540. M. A. Olshanskii Department of Mechanics and Mathematics, Moscow State M.V. Lomonosov University, 119899 Moscow, Russia e-mail: [email protected] A. Reusken (B) Institut für Geometrie und Praktische Mathematik, RWTH-Aachen University, 52056 Aachen, Germany e-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative Solvers for the Stochastic Finite Element Method

This paper presents an overview and comparison of iterative solvers for linear stochastic partial differential equations (PDEs). A stochastic Galerkin finite element discretization is applied to transform the PDE into a coupled set of deterministic PDEs. Specialized solvers are required to solve the very high-dimensional systems that result after a finite element discretization of the resulting...

متن کامل

Studying the Mechanical and Thermal Properties of Polymer Nanocomposites Reinforced with Montmorillonite Nanoparticles Using Micromechanics Method

In this study, the mechanical and thermal behavior of the nano-reinforced polymer composite reinforced by Montmorillonite (MMT) nanoparticles is investigated. Due to low cost of computations, the 3D representative volume elements (RVE) method is utilized using ABAQUS finite element commercial software. Low density poly ethylene (LDPE) and MMT are used as matrix and nanoparticle material, respec...

متن کامل

Trace Finite Element Methods for PDEs on Surfaces

In this paper we consider a class of unfitted finite element methods for discretization of partial differential equations on surfaces. In this class of methods known as the Trace Finite Element Method (TraceFEM), restrictions or traces of background surface-independent finite element functions are used to approximate the solution of a PDE on a surface. We treat equations on steady and time-depe...

متن کامل

Localized bi-Laplacian Solver on a Triangle Mesh and Its Applications

Partial differential equations(PDE) defined over a surface are used in various graphics applications, such as mesh fairing, smoothing, surface editing, and simulation. Often these applications involve PDEs with Laplacian or bi-Laplacian terms. We propose a new approach to a finite element method for solving these PDEs that works directly on the triangle mesh connectivity graph that has more con...

متن کامل

Numerical Analysis and Scientific Computing Preprint Seria An adaptive octree finite element method for PDEs posed on surfaces

The paper develops a finite element method for partial differential equations posed on hypersurfaces in R , N = 2, 3. The method uses traces of bulk finite element functions on a surface embedded in a volumetric domain. The bulk finite element space is defined on an octree grid which is locally refined or coarsened depending on error indicators and estimated values of the surface curvatures. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 114  شماره 

صفحات  -

تاریخ انتشار 2010